Energy Harvesting Electrical from Nano Beam with Layer Piezoelectric under Random Vibration

Authors

  • Reza Shirani MSc student, Department of Engineering, Shahid Chamran University
  • younes yousefi Director of the Department of Mechanical Islamic Azad University Omidiyeh
Abstract:

In the present paper, electrical energy harvesting from random vibrations of an Euler-Bernoulli nano-beam with two piezoelectric layers is investigated. The beam is composed of an aluminum layer together with two piezoelectric ceramic layers (PZT 5A) serving as energy harvesting sensors. In the proposed method, the equations governing the bimorph nano-beam will be analytically derived using classical beam theory with corresponding modification coefficients to the nano-structure applied. Then, the derived system of equations will be solved following Kantorovich method. Assumed boundary conditions for the nano-beam are as follows: a clamped end with the mass concentrated at the free end of the beam. Further, the input activation function of the system for energy harvesting was taken as being random. Since the objective of this research is to investigate the amount of harvested energy, the section on the results provides associated voltage and maximum output power curves with the bimorph nano-beam under random activation and input white noise, while also presenting the effects of characteristics and scale factor of the nano-particles on the amount of harvested energy.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A periodic folded piezoelectric beam for efficient vibration energy harvesting

Periodic piezoelectric beams have been used for broadband vibration energy harvesting in recent years. In this paper, a periodic folded piezoelectric beam (PFPB) is introduced. The PFPB has special features that distinguish it from other periodic piezoelectric beams. The Adomian decomposition method (ADM) is used to calculate the first two band gaps andtwelve natural frequencies of the PF...

full text

Energy harvesting from vibration using a piezoelectric membrane

In this paper we investigate the capability of harvesting the electric energy from mechanical vibrations in a dynamic environment through a unimorph piezoelectric membrane transducer. Due to the impedance matrices connecting the efforts and flows of the membrane, we have established the dynamic electric equivalent circuit of the transducer. In a first study and in order to validate theoretical ...

full text

Investigation of the Size Effect on the Nano-beam Type Piezoelectric Low Power Energy Harvesting

In this paper, size dependent beam type peizoelectric energy hardvester is investigated. For this goal, first nonlinear formulation of isotropic piezoelectric Euler-Bernoulli nano-beam is developed based on the size-dependent piezoelectricity theory then special beam type piezoelectric energy hardvester is probed for different parameters. Basic nonlinear equations of piezoelectric nano-beam are...

full text

Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration

The primary objective of this research is to develop a deploy-and-forget energy harvesting device for use in low-velocity, highly turbulent fluid flow environments i.e. streams or ventilation systems. The work presented here focuses on a novel, lightweight, highly robust, energy harvester design referred to as piezoelectric grass. This biologically inspired design consists of an array of cantil...

full text

Piezoelectric Energy Harvesting under Air Flow Excitation

This study focuses on the numerical analysis of a high efficiency Energy Harvesting device, based on piezoelectric materials, for the sustainability of smart buildings, structures and infrastructures. Before that, a comprehensive literature review on the topic takes place. The device consists in an aerodynamic fin attached to a piezoelectric element that makes use of the air flow to harvest ene...

full text

Energy Harvesting Strategy Using Piezoelectric Element Driven by Vibration Method

This study demonstrates a method for harvesting the electrical power by the piezoelectric actuator from vibration energy. This paper presents the energy harvesting technique using the piezoelectric element of a bimorph type driven by a geared motor and a vibrator. The geared motor is a type of PWM controlled device that is a combination of an oval shape cam with five gears and a speed controlle...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 2

pages  357- 370

publication date 2016-07-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023